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An l acoaat im given of an asymptotic method of intemting the dynamic eqaationa of the 
cluaical lineu theory of thin elastic akelle for the probbwn of free vibratha. It representa 
a dynamic analogy of the asymptotic method developed for the static problem [I]. 

The pre#ant method is wed to analyae the uymptotic properties of the frequencies, 
the l eeoaiated states of atrams, and that dependence on the order of l mallneaa of the 
diawtaioalesm thickaeas of the ahall, and 011 the density and configura~ioa of the nodal 
lines. A clu&fication k made of the forma of the free vibrationa awl, for each of thaae, 
aimplified equationa ara derived for their determination in first-order approsiawtion. A 
qualitative aaalyaia ia aho mrde of the l pectram of the eigenfreqaaaciea of the ahell. 

Methoda of integration of the obtained appoximate eqaationm are not cmaidered. 
Diecaaaion is limited to puticolu featarea of the corresponding boundary-vahe problems 
(if they have not been discasaed ia the problema ander c~aid~tion). 

1. In our study of the free vibrations of a thin e&tic shell the eqaationa and formulae 

of the theory of momentame will be ased at a starting point. 

Equations of eqailibrinm are 

i 3T, -- 
A ax + 

g (Rv,) -/- $ (AX)] + ng = 0 

ZZ 0 i@f 

(1.1) 

(1.2) 

110 
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and the elasticity relations are given by 

11.31 

(1.4) 

while 

are the strain-displacement equations. The notation of [ 11 is used and u and ,f3 sre the 

dimensionless parameters of an arbitrary system of orthogonal coordinates. The aymbol 

(G$) means that the equation preceding it cart be transformed into another eqnation by 

substitut~g U, 1, A, and [ with 8, 2, II, and q, respectively. The parameter h and the 

quantities 4; v, and < are defined by the formulas 

X=$g, 5 = ZEhu, q = ZEhv, 5 = 2Ehw 

where m is the mass per unit median surface area of the shell, and o is the frequency of 

vibration. (For simplicity, I& 71, 5 will henceforth by called displacements.) 

We shall assume that the shell executes harmonic oscillations and that the factor 

sin at appearing in the unknown magnitudes, will be neglected. 

We shall also assume that the shell has two closed boundaries which (after a soit- 

able transformation of the orthogonal curvilinear coordinates, if necessary) coincide with 

the lines a = cz 1, and u = a,: One of these boundaries can degenerate into a point, in 

which case its boundary conditions must be replaced by the conditions of continuity. 

2. According to how the &curves, i.e. the family of curves containing the boundary 

of the shell, are dis~ibuted, we shall distinguish the foIlowing cases : 

ca8e 10 1 /R,’ # 0, 1 fRu+O 
case Ib 1 / R,’ # 0, 1 /RI, =1:0 

(the p-curves do not follow the asymptotic lines. In the case Ia they do not coincfda with 



112 A.L. Gol’denveizer 

the lines of curvature, while in the case Ib, they do.) 

case IIa 1 f IZ,’ - 0, 1 f R,, # 0, 1 ihyi; 0 
case II6 1 / R,’ = 0, 1 lR,,#O, 1 /‘RI’ =O 

(Here, the p-curves follow one of the two families of asymptotic lines. In the case 110 

they are not orthogonal to the other family, while and in the case IIb, they are.) 

case III 4 i R,’ = 0, 1 IR,, =O, 1 iR,‘+O 

(In this case, the p-curves follow a unique family of asymptotic curves.) 

Case I can occur with shells of arbitrary curvature, case II is possible only when the 
shell has negative curvature (110 for non-minimal surfaces and case IIb for the minimal ones). 

and case III can occur only when the shell has zero curvature. 

The caIculations will be carried out for all the cases simultaneously. When necessary, 

the respective formulas will be distinguished by the corresponding Roman numerals with 

or without a letter. 

3. In the present paper main consideration is devoted to vibrations with sufficiently 

large variations of the states of stress and strain, where the term variation is used in the 

same sense as in the static theory of shells [I]. Th e solution obtained is very approximate 

(the possibility of improving the accuracy is discussed in section 9.) Accordingly, when 

studying different types of integrals of the dynamic equations of the theory of shells in 

sections 4 to 8, we have in each equation retained only the principal (for the given integral) 

terms. In estimating the different terms, we assume that the differentiation symbols in front 

of the unknowns (displacements, forces, and moments) obey the relations 

&- h*-P, i h 
h 

*= R 
(3.1) 

where h, =; h / R is the dimensionless half-thickness of the shell, R is a character 

istic radius of curvature of the median surface, and p, and q are the indices of variation 

in the directions of the U- and p-curves, respectively. 

We shall assume everywhere that 

0 < max (P, d < 1 (3.2) 

Here, the left-hand side inequality guarantees the appIicability of the method of in- 

vestigation used here, and the right-hand side inequality guarantees the applicability of 

equations (1.X) to (1.6). 

We shall also assume that 

(3.3) 

where r is a number characterizing the asymptotic magnitude of the frequency of oscilla- 

tion (O decreases like he2’ as r increases). 
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4. The basic integrals for quasi-transverse oscillations will be defined as the solutions 

of the dynamic equations of the theory of shells for which the following asymptotic rela- 

tion is satisfied 

max CC, 7) << 5 (4.11 

and the displacements [, q, and 4 are determined in the first approximation by the equa- 

tions 

T, = $$y (et + ae,) (a-+) , s = &w 
(4.21 

2Ehel = $-g + -&+pj& (.+I) 

These are the dynamic equations of the momentumless theory in which the inertial 

membrane forces are disregarded. 

Thus, the basic integrals for quasi-transverse oscillations represent the dynamic 

analogy of these solntions of the static equations of the theory of shells which we 

called the basic integrals [l]. The analogy is also evident in the fact that, when (4.2) is 

integrated,only two boundary conditions can be satisfied on the boundary. 

The asymptotic properties of the basic integrals for the quasi-transverse oscillations 

are given in the Table. 
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l’he Table gives the exponents s in the asymptotic relation A - h,‘, where 

A denotes the quantity indicated in the first column. In the case of force T,, one must 
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choose the smaller of the two values of s separated by the division line. -4 freedom of 

choice of the scale factor for the considered homogeneous problem has been utilised, and 

is assumed (here and in the following), that 5 - h,O. The formulas (3.1) were taken 

into account, and for definiteness it is assumed that p > Q. 4s a check of the last column 

in the table it is necessary to recall, that in case III aB/tia = 0. 

The Table and the formulas (3.1) make it possible to obtain asymptotic estimates of 

all the terms in equations (4.2) and to determine the principalfcommensurable with the 

lowest degree of h,) terms in each of them. Neglecting the remaining terms, one can construct 

a system for the determination of the above-mentioned integrals in the same approximation. 

This system must contain no obvious discrepancies and in fact, it should contain as many 

unknowns as there are equations, while in any subsystem belonging to it, the number of 

equations should not exceed the number of unknowns. The choice of the asymptotic pro- 

perties of the basic integrals for the quasi-transverse oscillations quoted in the Table is, 

in fact, based on this requirement. 

It is not difficult to establish also the asymptotic properties of the moments and shear- 

ing forces. With the aid of (1.6). (1.4), and (l.l), these quantities can be expressed in 

terms of 5, ‘1, and (‘by formulas that contain only linear action terms. From these it follows 

that in all cases (see section 2) 

G, - G, - hf-2p; H N hi-p-q; NB _ hf-$P-q t4,31 

Fly making use of the Table and relations (3.1) and (4.3), one can estimate all the 

terms of the original dynamic equations (1.1) to (1.6) and determine the inequalities 

which must be satisfied by p and 4 in order to ensure that the quantities neglected in 

transition from (1.1) to (1.4) are smaller than the retained ones, when he is sufficiently small. 

This gives the left-hand side inequality (3.2) and two additional inequalities given in the 

last row of the Table. (In this row the assumption that p > Q has been rejected.) For 

cases la and Ib, two versions of the second inequality are possible (they are separated by a 

horizontal line). The upper one is valid when 1 / R,' # 0, and the lower one when 

1 I RI’ = 0. In th e o f II owing, we will mean that such inequalities determine the region 

of formal existence of the integral of the given type. 

5. Basic integrals for quasi-membrane oscillations denote solutions of the dynamic 

equations of the theory of shells for which the asymptotic relation 

max (5; 7) >> [ 

holds, and for which the membrane displacements tand 7 and the membrane forces Tt, Ta, 

and S are determined by the equations 
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The normal displacement, the moments, and the shearing forces can be expressed in 

terms of unknowns present in the system (5.2) by means of linear relations : 5 is determined 

from the equation 

and G1, G,, H, N1, andNz, are constructed in the nay described in section 4. 

The asymptotic properties of the basic integrals for quasi-membrane oscillations when 

p = q, i.e. for the same index of variation in the directions of the CL- and p-curves, can be 

expressed by the relations 

f; _ q - la,-P, 5 - h./, T, - T, - S - It,+@ 

G1-f&~iTj-h;-2p, N1-N2.-hf-3p, A-h*+’ 
(5.4) 

With the aid of (5.4) and (3.1), it is easy to derive the inequalities for p and q, which 

determine the region of formal existence (see section 4) of the bssic integrals for quasi- 

membrane oscillations. These inequalities coincide exactly with (3.21, i.e. they are 

satisfied whenever both, the present method of investigation and the classical theory of 

shells are simultaneously applicable. 

The basic integrals for quasi-transverse oscilIations do not have an analogy in the 

asymptotic theory of solution of the static problem. Equations (5.2) become the equations 

of the plane problem in the theory of elasticity (in the distorted metric). When integrating 

these equations, we can also take into account just two boundary conditions at every 

point of this boundary. 

6. The integrals for quasi-transverse vibrations with large variations are defined as 

the solutions of the equations of the dynamic theory of shells, in which the normal dis- 

piacement, the moments, and the shear forces are determined by the equations 

i.e. by the equations of the flexure theory of vibrating plates. (In section 6, we investigate 

vibrations with large variations, hence A and B are assumed to be constants.) 

In the integrals for quasi-transverse vibrations with large variations, the asymptotic 

properties of the state of stress are the same as those in the case of the basic integrals 

for quasi-transverse vibrations (see section 41. and for parameter x in aI1 cases (section 21 

we have the relation 

J, - h2;4y, y = max (P, 4) 
The tangential dispIacements cand 7 for the present integrals can be determined in 
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first approximation by the equations 

Tl =lJo [ 
1 aE 

----A-z- -&++&-&)] 043 (6.3) 

s= I 
2 (1 + a) ( 

_L!3_+$!_+3_j 
A az 

In the above equations the quantity [must be regarded as known, hence (6.3) re- 

present the nonhomogeneous equations of the plane problem of the theory of elasticity. 

The integrals for quasi-transverse oscillations with large variations can exist only, 

when at least once of the inequalities in the last row of the table is invalid. This means 

that their region of formal existence is defined by 

max (P, 

max (P, 
max (p, 

max (%P - %q, 4) > ‘/a 

d > ‘I2 
(I) when l/R< += 0 

(6.4) 

3/a4 - %P) > ‘I2 (14 
2q - PI > ‘12 Ub) when 1/R; = 0 

(IIO), max t3/2p - ’12s 3/2q - ‘/zP) > l/2 (nb) 

max (2~ - 4; 9) > ‘/2 (m 

The static analogy of the above integrals, will be the integrals with large variations 

determined by the states of flexural and membrane stresses (cf. [I]. part IV, Section 15). 

The approximate equations (6.1) and (6.3) as a whole, are sufficiently arbitrary to satisfy 

all the four boundary conditions at all points of the edge of the shell. 

7. The basic integrals introduced in sections 4 and 5 are not sufficiently arbitrary to 

satisfy all the boundary conditions of the theory of shells and, generally speaking, in solv- 

ing the boundary-value problems with the aid of the corresponding approximate equations 

discrepancies in the bonndary conditions will arise. In connection with that, we shall 

introduce auxiliary integrals which will enable us to remove such discrepancies. 

In the present walk, it is assumed that the boundary conditions are imposed along the 

curves u = const and, consequently, that the discrepancies should also be removed along 

these curves. Taking these requirements into account, we will formulate the properties 

that determine the auxiliary integral: if p ’ and q are the indices of vatiation in the dir- 

ections of the U- and p-curves, then the following inequality should be satisfied 

P’>Q>O (7.1) 

and, moreover, the normal displacement 5 should in the first approximation be determined 

by the equations 

g++$L+ hC = 0, TB = is(ea + ae,), N, = _i!- 5 t,.21 
A aa 

2Ehe, = - $ ml, ml, a 
(I), 2Ehe, = -+$ 2Ehx, = $$$- 
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G, = - 2Eh* 
3 (i - 68) 

x1, 81 + bee = 0 

which represent the dynamic analogy of the approximate equations in the theory of the 

simple boundary effect [l]. 

Eliminating all unknowns except 4 from (7,2), we obtain the equation 

3 (1 
(7.4) 

which differs from the governing equation in the static theory of the simple boundary effect 

only by the presence of the dynamic term A(, 

In deriving @A), account bas been taken of the fact that the index of variation with 

respect to U is certainly positive, and therefore the quantities A, B, RI’, R,’ and 

Rl, in the first approximation equations can be regarded as constants (with respect to 

a). Within the limits of this accuracy, it is also possible to express the remaining un- 

knowns in terms of < 

E 
ha 

= - 3 (1 - cry (l/Rs’S - k) 
(A~~)~~ Ra 

E 
Aa 2v 1 wi 

= 3(1 
--- 

- oa) 5 Rla AaB acidah 
(IIb) 

ha 
q 

2 1 asg 

= - 3 (1 - aa) (l/R;2 - ?L.) zAs= 
(I, II) 

ha 
rl =- 3(i 

i 1 aq A-- 
- oa) h &’ A”B .aaaap m 

(P’ > 29) 

(1, Ha, III) 

(7.5) 

These fort&as are derived in the same way as those in the static theory of the 

simple boundary effect. They are vaIid, provided that the inequality (7.1) is satisfied 

and 1 J Ra’* is not too small. 

8. Let us assume that the given auxiliary integral corresponds to the given basic integral 

when their indices of variation q coincide and the parameters x have the same values. 

When the auxiliary integral corresponds to the integral of the quasi-transverse 

vibrations, it will be called the auxiliary integral of the quasi-transverse vibrations. In 

this case, x is commensurable with the exponents of & which are given in the Table. 
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On account of this, one can derive from equation (7.4) similar formulas for the index of 

variation p ‘: 

(8 .O) 

when P > Q 

p’ = ‘/z (I); p’ = t/Z - Vz (p - q) (II), P’ = ‘12 - P + Q wn 

when Q > P 

p’ = =I2 - v2 (q - p) (IIb), p’ = 112 (I, 110, III) 

It is easily verified that, whenever the inequalities in the last line of the Table are 

satisfied, the inequalities (7.1) are also satisfied. This means that the region of formal 

existence of the basic integral of quasi-transverse oscillations and the corresponding 

auxiliary integral are identical. 

If the auxiliary integral corresponds to the basic integral of the quasi-membrane 

vibrations, then it will be called the auxiliary integral of the quasi-membrane vibrations. 

In this case we have for h, the asymptotic estimate (5.4) which, in the more general case 

b # q) assumes the form 

h- h*-2Y, Y =max (P, q) 

From which, with the help of (7.4), we obtain 

(8.1) 

pt = ‘12 + ‘/*y (8.14) 

This means that the left-hand side of relation (7.1) will be satisfied identically. 

Consequently, for an arbitrary basic integral of the quasi-membrane vibrations one can 

construct a corresponding auxiliary integral, provided the boundary forming its base does 

not have points where h - 1 / R,’ is small. 

The auxiliary integral of the quasi-transverse vibrations can be regarded as the 

dynamic analog of the simple boundary effect in the static problem. However, they also 

differ in one fundamental point. The simple boundary effect breaks down at the points 

where a pare geometrical equality Ra’ = 00, is fulfilled and, if it exists, then its 

oscillations are always damped. The auxiliary integral for the quasi-transverse vibrations 

degenerates at the points the properties of which depend on the form of the considered 

oscillations, and, if this integral exists, it can have a purely oscillatory part (when 
1 > l I R’2). 

9. For each of the forms of integrals introduce in sections 4 to 8, approximate 

governing equations and formulas have been derived. This means that if the original 

dynamic equations of the theory of shells is written in the form 

L(R) =o (9.1) 

where the symbols L and R stand for a differential operator and the totality of unknown 

variables in the theory of shells, respectively, it can be asserted that the indicated 

methods (different for different types of integrals) yield Equation (9.1) in the form 
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L (R) =_ L’ (R) + 1 (R) = 0 

where L ‘amd I are the principal and minor parts of the operator L, and where we have 

assumed that R can be determined approximately from the 

L’ (R) = 0 

Asymptotic estimates of the quantities L ‘(R) and i (RI are given and for p and q 

we have derived such inequalities that when they are fulfilled at sufficiently small ha, then 

! L’ @)I>\ WI (9.31 

is valid. This means that, in each equation separately, the moduli of the terms in L ‘(RI 

significantly exceed the moduli of those in I (R). 

The dynamic equations of the theory of shells (9.1) can be solved by means of the 

method of successive approximations, putting 

R =Ro +R, +. e. +Rs 

and assuming that R, satisfy the equations 

L’ (R,) = 0, L’ (RJ = - 1 (R,_,) (0 < t <4, L (R,) = -2 (R,_,) 

In order that the process should have asymptotic character, it is necessary (but, of 

course insufficient) that inequality (9.3) be satisfied. In this connection, the region of 

values of p and q in which (9.3) is satisfied was called the region of formal existence of 

the given integral. 

A better-founded study of the conditions of existence of the integrals introduced in 

sections 4 to 8 would lead to the fo~ulation of certain auxiliary requirements similar to 

those brought to light during the asymptotic analysis of the static problem (for example, the 

requirement that the cylindrical shell should not be too long or that the conical shell shonld 

not contain the apex, etc.). 

10. In what follows, without explicitly mentioning it, we will limit ourselves to cases 

where the boundary conditions can be separated into membrane (tangential) and non- 

membrane {non-tangential) parts (cf. [l], pert II, section 3). Then, by analogy with static 

problems, it is natural to assume that in dynamics also one can apply the method of de- 

composing the state of stress. The first variant of this method conai sts in the fact that 

the solution in the first approximation is sought in the form of a aum of the basic integral 

of quasi-transverse vibrations which satisfies the membrane boundary conditions (and 

which, in general, leads to a disparity with the non-membrane boundary conditions) and an 

auxiliary integral of the quasi-transverse vibrations which removes this disparity. 

In such an approximate solution, there will be a ‘secondary’ disparity in the membrane 

boundary conditions. It can however be removed by constructing the following approximate 

basic integral of the quasi-transverse vibrations, etc. Thus, the iterative processes in 
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section 9 can be constructed so, as to take the boundary conditions into account. 

The conditions of applicability of the decomposition method can be formulated as 

follows : 

10.1 

10.2 

10.3 

10.4 

the approximate equations (4.2) of the basic integrals for the quasi-transverse 

vibrations should have for definite values of h, non-trivial solutions, satisfying 

the given membrane boundary conditions ; 

there should exist integrals of the dynamic equations of the theory of shells 

(1.1) to (1.61, whose approximate values are determined by the boundary con- 

ditions 10.1 ; 

auxiliary integrals of the quasi-transverse vibrations should exist, correspond- 

ding to the solution of the boundary-value problem 10.1 ; 

the iterative process of imposing the boundary conditions described at the 

beginning of this section, should converge. The question of satisfying con- 

ditions 10.1 will be discussed in sections 11 and 12. It follows from 10.2 

that p and q should satisfy the inequalities in the Table and possibly, also 

auxiliary conditions (see the end of section 9). 

The inequalities in the Table are also necessary for satisfying the condition 10.3. 

Moreover, it is also necessary that the equality h = l/R, ” is not satisfied at any point 

on the boundary. 

The study of condition 10.4 in the rigorous formulation is as difficult as the study of 

the existence of the basic and auxiliary integrals. To be logically consistent, we must 

replace this condition by a formal requirement, that the ‘secondary’ discrepancy in the 

membrane boundary conditions diminishes without limit together with A,. Then the question 

becomes basically simple. Here one can use the method described in [2] for the analogous 

static problem. Generally speaking, condition 10.4 will be formally fulfilled whenever 

conditions 10.1 to 10.3 are satisfied. However, one can encounter exceptions connected 

with the peculiarities of the theorems on the existence of the solution of dynamic 

boundary-value problems. 

11. Now we turn to condition 10.1, i.e. we will consider the boundary-value problem 

consistingin the integration of equations(4.2) subject to the membrane boundary conditions. As 

earlier, we will discuss the oscillations with positive index of variation. Thns, in (4.2) 

one can retain only the leading derivatives of the unknowns, i.e., the quantities 

A, B, RI’, Rs’, and RI, are to be regarded as constants. In resorting to the symbolic 

method, this allows us to reduce system the (4.2) to the equation 

where @ is a potential function in terms of derivatives of which,all the unknowns are 

expressed. 
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The question of the existence of non-trivial solutions of the boundary-value problem 

for equation (11.1) with homogeneous linear boundary conditions is debatable. Its peculiarity 

liea In the fact that one must determine eigenvalues of the factor x preceding the operator 

NN which is of the same order as the operator LL which does not contain h. Such problems 

are hardly ever encountered in the literature, and the associated spectrum has its own 

peculiar properties which will be demonstrated by some examples. 

Example 11.1 Let (1.1) have the form 

(&;*)~-24$4&o (R=const) (11.2) 

i.e. the problem is that of the vibration of a circular, cylindrical shell of radius R. 

When the coefficient in the brackets on the left-hand side of the equation (11.2) is 

negstive (11.2) can be treated as the homogeneous equation of the flexure of an anisotropic 

pIste. Then it follows that for the usual boundary conditions it does not possess non- 

trivial solutions. Consequently, all the eigenvalues of A, if they exist, must lie on the 

closed interval (0, R”). It is easy to find a case where the spectrum of x for the equation 

(11.2) comprises an infinite set of values with the accumulation point h = l/R’. Such a 

spectrum is obtained when (11.2) is integrated in a rectangle with boundary conditions 

corresponding to a hinged support. 

With an equation of type (11.1) one can encounter a spectrum which is dense everywhere. 

In order to show this, let us consider the following example. 

Example Il.2 Consider the equation 

am a‘w 
aI= 3-h p-h a2 aarp+blf$)=O aaa (11.3) 

where aI, aa, bl and b, are positive constants, and let us integrate it in the rectangle 

(0 < a < a,; 0 < p < PO) with the boundary conditions @ = 0. 

Equation (11.3) can be reduced to the form 

8’0 aw _--- 
axa aya -O ( P=Ss Z=a, y=# 

when the region of integration becomes 

This is the homogeneous Dirichlet problem for the wave equation which was studied 

in [3 to 61. In a rectangle it has a non-trivial solution if and only if the ratio of the sides 

is a rational number. Consequently 

(n, m- are fntegem) 
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From this it is easy to derive a formula for the eigenvalues of A, from which it 

follows that they are densely distributed everywhere in the interval (al / u2, b1 / b2). 

Note. From this example it follows that an equation of type (11.1) can have a spectrum 

which is dense everywhere. However, this obviously formal result only means that there is 

a certain condensation of frequencies, since out of all the eigenvalues of X of equation 

(11.1) it is only necem ary to retain those corresponding to the indices of variation restricted 

by the inequalities in the Table. 

When a, / a, = b1 / b, , the spectrum of problem 11.2 degenerates into a point and the 

eiganfnnction of @ becomes indeterminate. In problems of the theory of shells, such a case 

will occur when in equation (11.1) 

1 
LL=-FN (R = const.) 

i.e. when the median surface of the shell is a sphere. In discussing this result (the unique- 

ness of the frequency and the arbitrariness of the form of oscillation), it is necessary to 

point out that equation (11.1) determines only the first approximate solution. It can be 

assumed that some iterative process exists and that the obtained formal result means that 

a certain number of frequencies of the spherical shell differs little from each other and 

that the associated modes of oscillation can be determined not from the initial but from 

subsequent stages. 

12. If one studies the vibration in which the variation in the direction of one of the 

coordinates, e.g. in the /?i direction, predominates over the given region a question arises 

whether in the first approximation of (11.1). the derivatives with respect to u are negligible 

compared with those with respect to p, and can be neglected. Of course, for this it is 

necessary that the resulting equation for the first approximation with the membrane bonnd- 

ary conditions should have non-trivial solutions with a variation of the required type. Let 

us consider some examples. 

Example 12.1 The oscillation of a circular cylindrical shell of radius R (@I with 

predominant variation along the transverse coordinate 6. In this case, equation (11.1) can 

be put in the form 

1 PO i3w -- 
R2 &@ -h,pa=O (12.1) 

Assuming that the region of integration is a rectangle with sides parallel to the 

coordinate axes, equation (12.1) can be solved by the method of separation of variables. 

Setting 

(IJ = x (4 y (B) 

we will have 

XI” - /ix’ = 0, y’“--y&-J 
112 ’ 

(12.2) 



Qualitative analysis of ftee vibrations of an elastic thin shell 123 

From this it follows that there exist two sequences of eigenvalues kl, k,, . . ., k,. . - - 
and h, h, . . ., rtr . . for the parameters k and r. The first sequence increases with 

increase in the index of variation p in the direction of the U- curves ; the second sequence 

increases with increase in the index of variation Q in the direction of the p-curves. 

From the last equation in (12.2) it is clear that h, increases without hounds as p 

increases, and that it decreases without hounds with increasing q. (Formally, one obtains 

an unbounded spectrum, although, A is in fact bounded from above also in the present case 

because of the necessity of satisfying the inequality p < q.) 

Example 12.2 Vibration of a shell of revolution with predominant variation along the 

longitudinal coordinate CZ. In this case, the simplified equation (11.1) has the form 

(12.3) 

When R, = const, i.e. for; circular cylindrical shells and for the sphere, this eqaation 

has a single eigenvalue 3, = 1 / Rp2, and the function @ remains indeterminate. This 

result was already obtained for the problem of arbitrary vibrations of a spherical shell 

(section 11). Now we can add that the vibrations of a circular cylindrical shell exibit the 

same properties, provided the variation in the longitudinal direction predominates. 

When Rz = R, (a), equation (12.3) h as only trivial solutions. In discussing this result 

it is necessary to note that in passing from (11.1) to (12.3) the term with the fourth derivative 

with respect to a which was the dominant term on the left-hand side of equation (ll.l), 

was retained. This is legitimate only in the case when the expression h - 1 / R,a is 

nowhere too small in the region under consideration. This will obviously be not true for 

values of x bounded by the inequalities 

1 1 
minm<h<maxRjj2 

Thus, the obtained result means only that the oscillations of the type sought (i.e. the 

variation with respect to u is always sufficiently large and always greater than the varia- 

tion with respect to /?I, cannot take place at frequencies outside the limits imposed by 

(12.4). However, when these inequalities are fulfilled, then not only the passage from (11.1) 

to (12.3) but also the use of the momentless equation (11.1) becomes illegitimate. 

Problems of the present type also include the problem of the axially symmetric oscil- 

lation of a circular conical shell studied in [7]. There use was made of the method of 

asymptotic integration of the ordinary differential equations, and it was discovered that 

within the interval of integration there is so-called transition point, i.e. a point at which 

the coefficient of the highest-order derivative of the degenerate (momentless) equation 

vanishes. 

In the more general problems on the eigenvalues of equations (11.1). one can encounter 

transition curves. This means a violation of condition 10.1 of the applicability of the first 

variant of the method of decomposition (section IO). 

Example 12.3 The vibrations of a shell of revolution with predominant variation along 

the transverse coordinate p . In this case the simplified equation (11.1) has the form 
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(12.5) 

Once again when R, - const (for the sphere) we obtain a single eiganvalue for 

X, and when RI = RI (a) there are no eigenvalues for h. In this case, this is due to the 

fact that no vibrations exist that satisfy the imposed conditions. 

13. In dynamic problems there is also a second variant of the method of decomposi- 

tion which has no static analogy. It consists in the fact that the solution in the first ap- 

proximation is composed of the basic integral for the quasi-membrane oscillations, which 

satisfy the membrane boundary values, and the corresponding auxiliary integral of the 

quasi-membrane oscillations which removes the discrepancies in the non-membrane 

bounds conditions. 

The conditions for the realixation of the second variant of the decomposition sre 

formulated in the manner similar to that of the first variant in section 10, but the basic 

and auxiliary integrals of the quasi-transverse oscillations are replaced with those for 

quasi-membrane oscillations. At the same time, the answer to the question as to when 

these conditions will be fulfilled is much simpler, than that in the case of quasi-rnern~~e 

0sciIIations. 

The boundary-value problem of condition 10.1 is identical with the boundary-value 

problem of the plane theory of elasticity. For the usual boundary conditions, it has a non- 

trivial solution for definite values of X. 

The region of formal existence of the basic and auxiliary integrals for quasi-membrane 

oscillations can be determined by inequality (3.2). its upper boundary coincides with the 

boundaries of applicability of the classical theory of ahells. 

From (3.2) and (8.1) it follows that 

Therefore, no points for the auxiliary integrals exist, at which the equality h = 1 / -?&‘a 

is either exactly or approximately satisfied. 

It is easy to settle the question of the formal fulfilment of condition 10.4. In the basic 

integrals for quasi-membr~e oscillations, the membrane factors sre si~~icantly larger 

than the corresponding non-membrane ones. Thus, for example, %, 11 > 5. For this it 

follows that the ‘primary’ discrepancy in the non-membrane boundary conditions will already 

be small. In the auxiliary integral for quasi-membrane oscillations, on the other hand, the 

non-membrane factors dominate. In particular (5; $+ 5, vi). Therefore the ‘secondary’ dis- 
crepancy in the membrane boundary conditions will be quite small. Howavsr, if one speaks 

of satisfying condition 10.4 in the stricter sense, a special case may occur connected 
with the fact that the auxiliary integrals for quasi-membrane oscillations obviously have a 
purely oscillatory part. which follows from (13.1) and (7.4). 

14. The baoic integrals for the quasi-transverse oscillations with large variation 
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contain sufficient arbitrariness to satisfy all four boundary conditions of the theory of 

shells. In particular, if these conditions are decomposed into membrane and non-membrane 

parts, then the non-membrane boundary conditions must be taken into account when inte- 

grating equations (6.1) while the membrane boundary conditions,- when integrating 

equation (6.3). Both boundary-value problems obviously have solutions. The first problem 

is the boundary-value problem for the flexure of a plate, and the second one is the non- 

homogeneous static boundary-value problem in the plane theory of elasticity. 

15. Now we will formulate the conclusions that follow from the above results. It will 

be assumed that inequality (3.2) is always satisfied. Free vibrations can be subdivided 

into quasi-transverse and quasi-membrane types. The quasi-transverse oscillations are 

characterized by the fact that the relation 5 > max (E, V) is satisfied for them. In 

deriving the first approximation for these oscillations one may neglect the inertial 

membrane forces. For the quasi-membrane oscillations one has max (E, 11) > 5 and the 

inertial membrane forces cannot be neglected. 

The quasi-transverse oscillations in their turn are conveniently classified according 

to their variations. When p and q satisfy both inequalities given for the respective cases 

in the Table, the variation of the quasi-transverse oscillation will be called average. When 

at least one of these inequalities is violated, the variation of the quasi-transverse oscil- 

lation will be called large. 

When certain auxiliary conditions are satisfied (see sections 9 to 121, the quasi- 

transverse oscillation with average variation can be studied with the aid of the first 

variant of the method of decomposition of the state of stress (section 10). In this case, the 

eigenvalues A, will be determined in the first approximation, from the boundary-value 

problem consisting of the integration of the dynamic momentless equations (without the 

inertial shear forces) using the membrane boundary conditions. 

The quasi-transverse oscillations with large variation are constructed with the aid of 

the quasi-transverse integrals. Moreover, the eigenvalues for h are found in the first ap- 

proximation from the boundary-value problem consisting of the integration of the equations 

for the flexural vibration of plates using the non-membrane boundary conditions. 

One can also have intermediate quasi-transverse oscillations for which one of the 

inequalities in the Table becomes an equality. 

In the first approximation, such oscillations are studied with the aid of equations which 

are the dynamic analogs of the equations for a state of stress with large variation. They were 

used in [8]. 

Quasi-membrane oscillations with any indices of variation within (3.2) can be cons- 

tructed with the aid of the second variant of the method of decomposition of the state of 

stress (section 13). Moreover, the eigenvalues of h can be determined in the first approxi- 

mation by integrating the dynamic equations of the plane theory of elasticity using the 

membrane boundary conditions. 
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Note. In both variants of the method of decomposition, the auxiliary integrals are 

needed only in order to make more accurate the states of stress and strain, and have no 

effect on the first approximation for h. 

The asymptotic estimates of the igenvalues of h were constructed for all types of 

vibration. For quasi-transverse oscillations with average variation, these estimates are 

given in the Table. For quasi-transverse oscillations with large variation and for quasi- 

membrane oscillations, the estimates can be determined by formulas (6.2) and (5.4), 

respectively. 

With the exception of the quasi-transverse oscillations with average variation, all the 

different types of oscillation have the usual regulatity, i.e. increase in frequency with 

increase in variation. 

The quasi-transverse oscillations with average variation constitute an exception. 

Firstly, for them the eigenvalues of h either remains essentially constant or even de- 

creases with increase in the value of the index of variation of the state of stress. 

Secondly, for these oscillations (and only for these) the equations determining the first 
. . 

approxrmatron to h depend on the curvature of the surface. As a consequence, not only the 

density of the nodal lines but also their configuration (distribution relative to the asymptotic 

curves) turn out to be important. 

From the estimates of h appearing in the Table, one can draw conclusions about the 

lowest frequency of oscillation of shells not having positive curvature. In such a shell it 

is possible to have oscillations with predominantly asymptotic nodal lines, i.e. with a pre- 

dominance of variation in the direction perpendicular to the asymptotic curves. In this 

case, when the variation is increased, A will first decrease (as long as the inequality in 

the Table is satisfied) and then (when one or other of the inequalities is violated) it will 

increase. The minimum value of x will be attained at the transition from decrease to in- 

creame when intermediate quasi-transverse oscillations take place. This result was 

obtained by another method in [8]. 

When p - 9 = 0, the oscillations of the shell cannot be separated into quasi-transverse 

and quasi-membrane. For such values of p and q the method of decomposition, i.e. the 

solution is formed from the basic integral determined in the first approximation by the 

dynamic momentless equations and the auxiliary integral (section 71. can be used in in- 

vestigations of oscillations. However, in this case one must take, in the momentless 

equations, all inertial terms into account, and this will radically change the nature of the 

corresponding boundary-value problem, which will now be of third degree in h instead of 

the first. The question of the properties of the solution of such a problem calls for a 

separate investigation. 
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